
Development of the ROOT system
History & Perspectives

Brookhaven National Lab

August 11th, 2008

René Brun, Philippe Canal

Philippe Canal, August 11th 2008 ROOT development 2

Outline

• Comments On The Evolution of Computing

• Challenges Ahead And ROOT’s Take on Them

• History of ROOT I/O

Philippe Canal, August 11th 2008 ROOT development 3

Fantastic Evolution of Computing

• Processors: x2000

• Memory: x1000

• Storage: x5000

• Networks : x100000

In 30 years only

Philippe Canal, August 11th 2008 ROOT development 4

Program size
(lines of code)

One user

Public

Libraries

MS Windows

Experiment

Code base
2000 cards

per box

24 boxes per rack

ROOT = 100 racks

From thousands to

millions

Philippe Canal, August 11th 2008 ROOT development 5

Philippe Canal, August 11th 2008 ROOT development 6

The main general software packages

• 1965: each physicist writes his/her own analysis program

• 1975: First tools:

• Histograms/statistics(HBOOK), Visualisation (GD3),

• Minimisation(Minuit), Simulation (GEANT1,2).

• 1985:

• Super Minis (VAX) and workstations (Apollo, VAX,IBM).

• A big step for detector simulation (GEANT3),

• A big step for interactive analysis (PAW).

• 1995:

• PAW, GEANT3 stables

• Investigation of Object-Oriented systems

• Failure of commercial products (Objectivity, Iris Explorer,..)

• The challenger ROOT

• 2005: ROOT, GEANT4

Philippe Canal, August 11th 2008 ROOT development 7

Software Hierarchy

OS & compilers

Networking

Frameworks like

ROOT, Geant4

Experiment

Software

End user

Analysis software

Hardware

20 MLOC

2 MLOC

2 MLOC

0.1 MLOC

Hardware
Hardware
Hardware
Hardware

Philippe Canal, August 11th 2008 ROOT development 8

Philippe Canal, August 11th 2008 ROOT development 9

Philippe Canal, August 11th 2008 ROOT development 10

Philippe Canal, August 11th 2008 ROOT development 11

The crystal ball in 1988

• Fortran90 seems the obvious way to go

• OSI protocols to replace TCP/IP

• Processors: Vector or MPP machines

• PAW,Geant3,Bos,Zebra: Adapt them to F90X

• Methodoly trend: Entity Relationship Model

• Parallelism: vectorization or MPP (SIMD and MIMD)

• BUT hard to anticipate that
• The WEB will come less than 3 years later

• The 1993/1994 revolution for languages and projects

• The rapid grow in CPU power starting in 1994 (Pentium)

Philippe Canal, August 11th 2008 ROOT development 12

Situation in 1998

• LHC projects moving to C++

• Several projects proposing to use Java

• Huge effort with OODBMS (ie Objectivity)

• Investigate Commercial tools for data analysis

• ROOT development not encouraged

• Vast majority of users very sceptic.

• RAM <256 MB

• Program Size < 32 MB

• <500 KLOcs

• libs < 10

• static linking

• HSM: tape->Disk pool <1 TByte

• Network 2MB/s

Philippe Canal, August 11th 2008 ROOT development 13

The crystal ball in 1998

• C++ now, Java in 2000

• Future is OODBMS (ie Objectivity)

• Central Event store accessed through the net

• Commercial tools for data analysis

• But fortunately a few people did not believe in this
direction :☺

• First signs of problems with Babar

• FNAL RUN2 votes for ROOT in 1998

• GRID: an unknown word in 1997 :☺

Philippe Canal, August 11th 2008 ROOT development 14

Situation in 2008

• It took far more time than expected to move people to
C++ and the new frameworks.

• ROOT de facto standard for I/O and interactive
analysis.

• The GRID:

• Experiment frameworks are monsters

Philippe Canal, August 11th 2008 ROOT development 15

The challenges
• Simplify the use of software systems

• Granularity

• Hope to see self-descriptive languages

• Interpreters + compilers

• Importance of caches on LAN and WAN

• « Task » oriented programming

• GUI with dynamic configuration

• Everything from the browser ?

• Graphics based on GL: Post X11 et QT

• Execute anywhere from anywhere

• Evolution of the execution (main --> plug-ins)

• Hardware force parallelism

• Extension of client-server models

• Data analysis

• -from batch to interactive systems

• -from sequential processing to parallelism

Philippe Canal, August 11th 2008 ROOT development 16

Challenge
Usability: Making things SIMPLER

• Guru view vs user view

• A normal user has to learn too many things before being able

to do something useful.

• LHC frameworks becoming monsters

• fighting to work on 64 bits with <2 GBytes

• Executable take for ever to start because too much code

linked (shared libs with too many dependencies)

• fat classes vs too many classes

• It takes time to restructure large systems to take advantage of

plug-in managers.

Philippe Canal, August 11th 2008 ROOT development 17

Challenge ++
Problem decomposition

Will have to deal with many shared libs

Only a small fraction of code used

Philippe Canal, August 11th 2008 ROOT development 18

Some Facts

ROOTROOT

InIn

19951995

ROOTROOT

InIn

20082008

10 shared 10 shared libslibs

200 classes200 classes

100 shared 100 shared libslibs

2000 classes2000 classes

PAW modelPAW model

PlugPlug--in managerin manager

Philippe Canal, August 11th 2008 ROOT development 19

%classes used

%functions used

Fraction of code really used in one program

Philippe Canal, August 11th 2008 ROOT development 20

Fraction of

ROOT code

really used in a

batch job

S
h
a
r
e
d
 l
ib
 s
iz
e
 i
n
 b
y
te
s

Philippe Canal, August 11th 2008 ROOT development 21

Fraction of ROOT
code really used in a
job with graphics

Philippe Canal, August 11th 2008 ROOT development 22

Large Heap Size Reduction

ROOT size at ROOT size at

startstart--upup

Also speedAlso speed--

up startup start--up up

timetime

Philippe Canal, August 11th 2008 ROOT development 23

Challenge ++
Sophisticated Plug-in Managers

• When using a large software base distributed
with hundred of shared libs, it is essential to
discover automatically where to find a class.

• The interpreters must be able to auto-load the
corresponding libraries

Philippe Canal, August 11th 2008 ROOT development 24

libGraf

…

TGraph
TGaxis
TPave

…

libX11

…

drawline
drawtext

…

pm

libCore

…

I/O
TSystem

…

libHist

…

TH1
TH2
…

libHistPainter

…

THistPainter
TPainter3DAlgorithms

…

libGpad

…

TPad
TFrame

…

h.Draw()

CINT

local mode

(Plug-in Manager)

pm

pm

pm

pm

Philippe Canal, August 11th 2008 ROOT development 25

Challenge ++
Languages

• C++ clear winner in our field and also other
fields

• see, eg a recent compilation at
http://www.lextrait.com/vincent/implementations.html

• From simple C++ to complex templated code

• Unlike Java, no reflexion system. This is essential for I/O and
interpreters.

• C++2009: better thread support, Aspect-oriented

• C++2014: first reflexion system?

Philippe Canal, August 11th 2008 ROOT development 26

Challenge ++
Opportunistic Use of Interpreters

• Use interpreted code only for:
• External and thin layer (task organizer)

• Slots execution in GUI signal/slots

• Dynamic GUI builder in programs like event displays.

• Instead optimize the compiler/linker interface (eg
ACLiC) to have
• Very fast compilation/linking when performance is not an issue

• Slower compilation but faster execution for the key algorithms

• ie use ONE single language for 99% of your code and
the interpreter of your choice for the layer between shell
programming and program orchestration.

Philippe Canal, August 11th 2008 ROOT development 27

Interpreter & Compiler integration

root > .x script.C

root > DoSomething(…);

root > .x script.C++

root > .x script.C+

gROOT->ProcessLine(“.L script.C+”);

gROOT->ProcessLine(“DoSomething(…)”);

execute file script.C

execute function DoSomething

compile file script.C
and execute it

compile file script.C
if file has been modified.

execute it

same from
compiled
or interpreted
code

Philippe Canal, August 11th 2008 ROOT development 28

Challenge ++
The Language Reflexion System

• Develop a robust dictionary system that can be
migrated smoothly to the reflexion system to be
introduced in C++ in a few years.

• Meanwhile reduce the size of dictionaries by doing
more things at run time.

• Replace generated code by objects stored in ROOT files.

• Direct calls to compiled code from the interpreter
instead of function stubs. This is compiler dependent
(mangling/de-mangling symbols).

Philippe Canal, August 11th 2008 ROOT development 29

Challenge ++
Code Performance

• HEP code does not exploit hardware (see S.Jarp talk at
CHEP07)

• Large data structures spread over >100 Megabytes
• templated code pitfall

• STL code duplication
• good perf improvement when testing with a toy.
• disaster when running real programs.

• std::string passed by value
• abuse of new/delete for small objects or stack objects
• linear searches vs hash tables or binary search
• abuse of inheritance hierarchy
• code with no vectors -> do not use the pipeline

Philippe Canal, August 11th 2008 ROOT development 30

Challenge ++
Software Correctness

• big concern with multi million lines of code

• validation suite

• unit test

• combinatorial test

• nightly builds (code + validation suite)

Philippe Canal, August 11th 2008 ROOT development 31

Programs Size
(RAM)

?

>2 GigaByte! brrr

Philippe Canal, August 11th 2008 ROOT development 32

Challenge ++
Towards Task-oriented programming

OS files

Data

hierarchy

Dynamic

tasks

Browsing

Philippe Canal, August 11th 2008 ROOT development 33

Challenge ++
Customizable and Dynamic GUIs

• From a standard browser (eg ROOT TBrowser)
on must be able to include user-defined GUIs.

• The GUIs should not require any pre-processor.

• They can be executed/loaded/modified in the
same session.

Philippe Canal, August 11th 2008 ROOT development 34

Browser Improvements

• The browser (TBrowser and derivatives)
is an essential component (from
beginners to advanced applications).

• It is currently restricted to the browsing
of ROOT files or Trees.

• We are extending TBrowser such that it
could be the central interface and the
manager for any GUI application
(editors, web browsers, event displays,
etc).

Old/current browserOld/current browser

Philippe Canal, August 11th 2008 ROOT development 35

Hist Browser + stdin/stdout

Philippe Canal, August 11th 2008 ROOT development 36

TGhtml web browser plug-in

URLURL

You can You can

browse a root browse a root

filefile

You can execute a You can execute a

scriptscript

Philippe Canal, August 11th 2008 ROOT development 37

Macro Manager/Editor plug-in

Click on button to Click on button to

execute script with execute script with

CINT or ACLICCINT or ACLIC

Philippe Canal, August 11th 2008 ROOT development 38

GL Viewer plug-in

Alice event Alice event

display display

prototype prototype

using the new using the new

browserbrowser

Philippe Canal, August 11th 2008 ROOT development 39

Challenge ++
Design for Parallelism

• The GRID is a parallel engine. However it is unlikely
that you will use the GRID software on your 32-core
laptop.

• Restrict use of global variables and make tasks as
independent as possible.

• Be thread-safe and (better) thread-aware

• Think Top->Down and Bottom->Up

Coarse grain: job, event, track
Fine grain

vectorization

Philippe Canal, August 11th 2008 ROOT development 40

100,000 computers

in 1000 locations

5,000 physicists

in 1000 locations

WAN

LAN

Towards a distributed system

Philippe Canal, August 11th 2008 ROOT development 41

LHC collaborations
(analysis steps)

Raw Data

(PetaBytes)

After reconstruction

(100 TeraBytes)

for analysis

(10 TeraBytes)

Analysis per physicist

(1 TeraByte)

DAQ -> T0 -> T1

T1 -> T2

T2 -> T3

Philippe Canal, August 11th 2008 ROOT development 42

GRID: Users profile

Few big users submitting

many long jobs (Monte Carlo,

reconstruction)

They want to run many jobs in

one month

Many users submitting

many short jobs (physics

analysis)

They want to run many jobs

in one hour or less

Philippe Canal, August 11th 2008 ROOT development 43

Many Use Cases

• Scenario 1: submit one batch job to the GRID. It runs
somewhere with varying response times.

• Scenario 2: Use a splitter to submit many batch jobs to
process many data sets (eg CRAB, Ganga, Alien).
Output data sets are merged automatically. Success rate
< 90%. You see the final results only when the last job
has been received and all results merged.

• Scenario 3: Use PROOF (automatic splitter and
merger). Success rate close to 100%. You can see
intermediate feedback objects like histograms. You run
from an interactive ROOT session.

Philippe Canal, August 11th 2008 ROOT development 44

Moore’s law revisited

Your laptop in 2016 with

32 processors

16 Gbytes RAM

16 Tbytes disk

> 50 today’s laptop

Philippe Canal, August 11th 2008 ROOT development 45

Challenge ++
Hardware will force parallelism

• Multi-Core (2-8)

• Many-Core (32-256)

• Mixture CPU + GPU-like (or FAT and MINI cores)

• Virtualization

• May be a new technology?

• Parallelism: a must

Philippe Canal, August 11th 2008 ROOT development 46

Challenge ++
Design for Client-Server

• The majority of today’s applications are client-server
(xrootd, Dcache, sql, etc).

• This trend will increase.

• Be able to stream objects or objects collections.

• Server logic robust against client changes.

• Server able to execute dynamic plug-ins.

• Must be robust against client or network crash

Philippe Canal, August 11th 2008 ROOT development 47

Challenge ++
LAN and WAN I/O caches

• Must be able to work very efficiently across fat pipes but
with high latencies.

• Must be able to cache portions or full files on a local
cache.

• This requires changes in data servers (Castor, Dcache,
xrootd). These tools will have to interoperate.

• The ROOT file info must be given to these systems for
optimum performance. See TTreeCache improvements.

Philippe Canal, August 11th 2008 ROOT development 48

Disk cache improvements with high latency networks

• The file is on a CERN machine connected to the CERN LAN at at 100MB/s.
• The client A is on the same machine as the file (local read)
• The client F is connected via ADSL with a bandwith of 8Mbits/s and a latency of

70 milliseconds (Mac Intel Coreduo 2Ghz).
• The client G is connected via a 10Gbits/s to a CERN machine via Caltech latency

240 ms.
• The times reported in the table are realtime seconds

client latency(ms) cachesize=0 cachesize=64KB cachesize=10MB

A 0.0 3.4 3.4 3.4

F 72.0 743.7 48.3 28.0

G 240.0 >1800s 125.4s 9.9s

One query to
a 280 MB Tree
I/O = 16.6 MB

We expect to

reach 4.5 s

Philippe Canal, August 11th 2008 ROOT development 49

Challenge ++
Executing Anywhere from Anywhere

• One should be able to start an application from any web
browser.

• The local UI and GUI can execute transparently on a
remote process.

• The resulting objects are streamed to the local session
for fast visualization. (and not via an X11 server!)

• Prototype in latest ROOT using ssh technology.

root > .R lxplus.cern.ch

lxplus > .x doSomething.C

lxplus > .R

root > //edit the local canvas

Philippe Canal, August 11th 2008 ROOT development 50

Challenge ++
Evolution of the Execution Model

• From stand alone modules

• To shared libs

• To plug-in managers

• To distributed computing

• To distributed and parallel computing

Philippe Canal, August 11th 2008 ROOT development 51

Executable module in 1968

• x.f -> x.o -> x.exe

x.exe

Input.dat

Output.log

Philippe Canal, August 11th 2008 ROOT development 52

Executable module in 1978

• x.f -> x.o
• x.o + libs.a -> x.exe

x.exe

Input.dat

Output.lognon portable

binary file

Philippe Canal, August 11th 2008 ROOT development 53

Executable module in 1988

• many_x.f -> many_x.o
• many_x.o + many_libs.a -> x.exe

x.exe

Input.dat

(free format)

Output.log
portable

Zebra file

Philippe Canal, August 11th 2008 ROOT development 54

Executable module in 1998

• many_x.f -> many_x.o
• many_x.o + some_libs.a
• + many_libs.so -> x.exe

x.exe

Input.dat

(free format)

Output.log

Objectivity?

ROOT ?

Zebra file
RFIO

Philippe Canal, August 11th 2008 ROOT development 55

Executable module in 2008

x.exe

Config.C

(interpreter)

Output.log

ROOT files

ROOT files

Oracle

Mysql

Dcache

castor
xroo

td

a.so b.so

u.so

Shared libs dynamically

loaded/unloaded

by the plug-in manager

LAN

Philippe Canal, August 11th 2008 ROOT development 56

Executable module in 2018 ?

x.exe

Config.C

(interpreter)

Output.log

ROOT files

ROOT files

Oracle

Mysql

Cac
he

Pro
xy

man
age

r

http

a.cxx

http

b.cxx

http

u.cxx

Local shared libs dynamically

Compiled/loaded/unloaded

from a source URL

WAN
x.exex.exex.exe

ROOT files

local cache

Multi-threaded

Core executor

Philippe Canal, August 11th 2008 ROOT development 57

Challenge ++
Software Development Tools

• better integration with Xcode, VisualStudio or
like

• fast memory checkers

• faster valgrind

• faster profilers

• Better tools to debug parallel applications

• Code checkers and smell detection

• Better html page generators

Philippe Canal, August 11th 2008 ROOT development 58

Challenge ++
Distributed Code Management

• patchy, cmz -> cvs

• cvs -> svn

• cmt? scram? (managing dependencies)

• automatic project creation from cvs/svn to
VisualStudio or Xcode and vice-versa

Philippe Canal, August 11th 2008 ROOT development 59

Challenge ++
Simplification of Software Distribution

• tar files

• source + make

• install from http://source

• install from http://binary proxy

• install on demand via plugin manager, autoloader

• automatic updates

• time to install

• fraction of code used

See BOOT

Project

First release

In 2008 ?

Philippe Canal, August 11th 2008 ROOT development 60

Conclusions

• Applications becoming more and more complex and
distributed over the net, it is essential to:

• Minimize interdepencies by providing a clean hierarchy of
modular systems with robust components underneath.

• Use as much as possible dynamic object managers (collections
in files, browsers, tasks, folders, etc)

• The new hardware is pushing us to consider both fine
grain and coarse grain parallelism

• More complexity must push us for:

• Simpler and simpler user interfaces

• Simpler software installation from sources on the web..

Philippe Canal, August 11th 2008 ROOT development 61

History of ROOT I/O

Streaming, Reflection, TFile,

Schema Evolution

Philippe Canal, August 11th 2008 ROOT development 62

• Version 0.9

• Hand-written Streamers

• Version 1

• Streamers generated via rootcint

• Support for Class Versions

• Version 2.25

• Support for ByteCount

• Several attempts to introduce automatic class evolution

• Simple support for STL

• Only hand coded and generated streamer function, Schema evolution done by hand

• I/O requires : ClassDef, ClassImp and CINT Dictionary

• Version 2.26 – 3.00

• Automatic schema evolution

• Use TStreamerInfo (with info from dictionary) to drive a general I/O
routine.

• Self describing files

• MakeProject can regenerate the file’s classes layout

ROOT I/O History

Philippe Canal, August 11th 2008 ROOT development 63

ROOT I/O History
• Version 3.03/05

• Lift need for ClassDef and ClassImp for classes not inheriting from TObject
• Any non TObject class can be saved inside a TTree or as part of a TObject-class
• TRef/TRefArray

• Version 4.00/08
• Automatic versioning of ‘Foreign’ classes
• Non TObject classes can be saved directly in TDirectory

• Version 4.04/02
• Large TTrees, TRef autoload
• TTree interface improvements, Double32 enhancements

• Version 5.08/00
• Fast TTree merging, Indexing of TChains, Complete STL support.

• Version 5.12/00
• Prefetching, TTreeCache
• TRef autoderefencing

• Version 5.16/00
• Improved modularization (libRio)

• Version 5.22/00
• Data Model Evolution (brought to your courtesy of BNL/STAR/ATLAS)

Philippe Canal, August 11th 2008 ROOT development 64

Early Days

• The fundamental elements of I/O are present:

• platform independence

• compression

• TFile/TDirectory layout and structure

• TTree

• Dictionaries are already the corner-stone of the I/O

• Allow streaming of user class with minimal intrusion and no
complex ddl system.

• rootcint generated default C++ Streamer function

• Any schema evolution required to maintain the
streamer functions by hand

Philippe Canal, August 11th 2008 ROOT development 65

Streamers in 0.90/08

class TAxis : public
TNamed,

public TAttAxis {

private:

Int_t fNbins;
Axis_t fXmin;

Axis_t fXmax;
TArrayF fXbins;

Char_t *fXlabels;

void TAxis::Streamer(TBuffer &b)
{

if (b.IsReading()) {

Version_t v = b.ReadVersion();
TNamed::Streamer(b);

TAttAxis::Streamer(b);
b >> fNbins;

b >> fXmin;
b >> fXmax;

fXbins.Streamer(b);

} else {
b.WriteVersion(TAxis::IsA());

TNamed::Streamer(b);
TAttAxis::Streamer(b);

b << fNbins;

b << fXmin;
b << fXmax;

fXbins.Streamer(b);
}

}

rootcint

Philippe Canal, August 11th 2008 ROOT development 66

Streamers in 2.25 – Byte Count

class TAxis : public TNamed,

public TAttAxis {

private:

Int_t fNbins;

Axis_t fXmin;

Axis_t fXmax;

TArrayF fXbins;

Char_t *fXlabels;

Int_t fFirst;

Int_t fLast;

TString fTimeFormat;

Bool_t fTimeDisplay;

TObject *fParent;

void TAxis::Streamer(TBuffer &R__b) {
UInt_t R__s, R__c;
if (R__b.IsReading()) {

Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
TNamed::Streamer(R__b);
TAttAxis::Streamer(R__b);
R__b >> fNbins;
R__b >> fXmin;
R__b >> fXmax;
fXbins.Streamer(R__b);
R__b >> fFirst;
R__b >> fLast;
R__b >> fTimeDisplay;
fTimeFormat.Streamer(R__b);
R__b.CheckByteCount(R__s, R__c, TAxis::IsA());

} else {
R__c = R__b.WriteVersion(TAxis::IsA(), kTRUE);
TNamed::Streamer(R__b);
TAttAxis::Streamer(R__b);
R__b << fNbins;
R__b << fXmin;
R__b << fXmax;
fXbins.Streamer(R__b);
R__b << fFirst;
R__b << fLast;
R__b << fTimeDisplay;
fTimeFormat.Streamer(R__b);
R__b.SetByteCount(R__c, kTRUE);

}
}

rootcint

Philippe Canal, August 11th 2008 ROOT development 67

Old Streamers in 2.25 – Schema Evolution

class TAxis : public TNamed,

public TAttAxis {

private:

Int_t fNbins;

Axis_t fXmin;

Axis_t fXmax;

TArrayF fXbins;

Char_t *fXlabels;

Int_t fFirst;

Int_t fLast;

TString fTimeFormat;

Bool_t fTimeDisplay;

TObject *fParent;

void TAxis::Streamer(TBuffer &R__b) {
UInt_t R__s, R__c;
if (R__b.IsReading()) {

Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
TNamed::Streamer(R__b);
TAttAxis::Streamer(R__b);
R__b >> fNbins;
R__b >> fXmin;
R__b >> fXmax;
fXbins.Streamer(R__b);
if (R__v > 2) {

R__b >> fFirst;
R__b >> fLast;

}
if (R__v > 3) {

R__b >> fTimeDisplay;
fTimeFormat.Streamer(R__b);

} else {
SetTimeFormat();

}
R__b.CheckByteCount(R__s, R__c, TAxis::IsA());

} else {
R__c = R__b.WriteVersion(TAxis::IsA(), kTRUE);
TNamed::Streamer(R__b);
TAttAxis::Streamer(R__b);
R__b << fNbins;
R__b << fXmin;
R__b << fXmax;
fXbins.Streamer(R__b);
R__b << fFirst;
R__b << fLast;
R__b << fTimeDisplay;
fTimeFormat.Streamer(R__b);
R__b.SetByteCount(R__c, kTRUE);

}
}

Developer

Philippe Canal, August 11th 2008 ROOT development 68

2001 - StreamerInfo

• ROOT File are now self describing
• Dictionary for persistent classes written to the file when closing the

file.
• ROOT files can be read by foreign readers (JAS for example)
• Support for Backward and Forward compatibility
• Files created in 2003 can be readable in 2015
• Classes (data objects) for all objects in a file can be regenerated via

TFile::MakeProject
• Data can be read without the original code

• Provide for automatic schema evolution
• Change the order of the members
• Change simple data type (float to int)
• Add or remove data members, base classes
• Migrate a member to base class

• Basic support for STL container
• does not support nested containers directly
• can not ‘split’ STL containers
• no schema evolution to and from different container types.

Philippe Canal, August 11th 2008 ROOT development 69

Streamers in 3.00 - StreamerInfo

class TAxis : public TNamed,

public TAttAxis {

private:

Int_t fNbins;

Axis_t fXmin;

Axis_t fXmax;

TArrayF fXbins;

Char_t *fXlabels; //!

Int_t fFirst;

Int_t fLast;

TString fTimeFormat;

Bool_t fTimeDisplay;

TObject *fParent; //!

void TAxis::Streamer(TBuffer &R__b)
{

// Stream an object of class TAxis.

if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
if (R__v > 5) {

TAxis::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
return;

}
//====process old versions before automatic schema evolution
....
//====end of old versions

} else {
TAxis::Class()->WriteBuffer(R__b,this);

}
}

developer

Philippe Canal, August 11th 2008 ROOT development 70

Seeing classes in a file

Root > f.ShowStreamerInfo()

Philippe Canal, August 11th 2008 ROOT development 71

2001 - examples

enum {kSize=10};

char fType[20]; //array of 20 chars

Int_t fNtrack; //number of tracks

Int_t fNvertex; //number of vertices

Int_t fX[kSize]; //an array where dimension is an enum

UInt_t fFlag; //bit pattern event flag

Float_t fMatrix[4][4]; //a two-dim array

Float_t *fDistance; //[fNvertex] array of floats of length fNvertex

Double_t fTemperature; //event temperature

TString *fTstringp; //[fNvertex] array of TString

TString fNames[12]; //array of TString

TAxis fXaxis; //example of class derived from TObject

TAxis fYaxis[3]; //array of objects

TAxis *fVaxis[3]; //pointer to an array of TAxis

TAxis *fPaxis; //[fNvertex] array of TAxis of length fNvertex

TAxis **fQaxis; //[fNvertex] array of pointers to TAxis objects

TDatime fDatime; //date and time

EventHeader fEvtHdr; //example of class not derived from TObject

TObjArray fObjArray; //An object array of TObject*

TClonesArray *fTracks; //-> array of tracks

TH1F *fH; //-> pointer to an histogram

TArrayF fArrayF; //an array of floats

TArrayI *fArrayI; //a pointer to an array of integers

………………..(see next)

Philippe Canal, August 11th 2008 ROOT development 72

2001- Support for STL

vector<int> fVectorint; //STL vector on ints

vector<short> fVectorshort; //STL vector of shorts

vector<double> fVectorD[4]; //array of STL vectors of doubles

vector<TLine> fVectorTLine; //|| STL vector of TLine objects

vector<TObject> *fVectorTobject; //|| pointer to an STL vector

vector<TNamed> *fVectorTnamed[6]; //|| array of pointers to STL vectors

deque<TAttLine> fDeque; //STL deque

list<const TObject*> fVectorTobjectp; //STL list of pointers to objects

list<string> *fListString; //STL list of strings

list<string *> fListStringp; //STL list of pointers to strings

map<TNamed*,int> fMapTNamedp; //STL map

map<TString,TList*> fMapList; //STL map

map<TAxis*,int> *fMapTAxisp; //pointer to STL map

set<TAxis*> fSetTAxis; //STL set

set<TAxis*> *fSetTAxisp; //pointer to STL set

multimap<TNamed*,int> fMultiMapTNamedp; //STL multimap

multiset<TAxis*> *fMultiSetTAxisp; //pointer to STL multiset

string fString; //C++ standard string

string *fStringp; //pointer to standard C++ string

UShortVector fUshort; //class with an STL vector as base class

vector<vector<TAxis *> > fVectAxis; //!STL vector of vectors of TAxis*

map<string,vector<int> > fMapString; //!STL map of string/vector

deque<pair<float,float> > fDequePair; //!STL deque of pair

Need custom Streamer

for these complex cases

Philippe Canal, August 11th 2008 ROOT development 73

Automatic Schema Evolution

Philippe Canal, August 11th 2008 ROOT development 74

Auto Schema Evolution (2)

Philippe Canal, August 11th 2008 ROOT development 75

TFile::MakeProject

All necessary

header files

are included

Comments

preserved

Can do I/O

Inspect

Browse,etc

Philippe Canal, August 11th 2008 ROOT development 76

2002 – I/O for Non-TObject

• Saving non-instrumented Classes

• Being able to save in a ROOT file objects from library that you
can NOT modify at all.

• Being able to easily save objects that do not inherit from
TObject.

• Lift limitation on number of template parameters

Philippe Canal, August 11th 2008 ROOT development 77

2005 - Generalized support for collections

• Abstract Interface (TVirtualCollectionProxy)

• Initial Prototype and fundamental Concepts by Victor
Perevoztchikov (BNL)

• Can be implemented for almost any collections

• Allows

• Splitting (when possible)

• Use in Tree Query (with automatic looping)

• Member-wise streaming (as opposed to Object wise streaming)

• Also

• Arbitrary nesting of STL containers

• Reading of STL containers without original code (Emulated mode)

• Extended in 2008 to also support splitting of container of
pointers.

Philippe Canal, August 11th 2008 ROOT development 78

TRef/TRefArray

• 2002: Allow for reference that span across branches or keys.

• Designed as light weight entities

• Assume large number of TRefs per event

• Very fast dereferencing (direct access tables)

• Not designed for finding an object in a different file

• Occupies in average 2.5 bytes in the file

• 2o04: Reference Autoload

• TTree can be set to allow for automatic loading of the branch
containing the referenced object

• 2006: Reference Autoderefencing

• TTree::Draw can transparently drill through TRefs (skipping complex
call to GetObject and casting)

• Autoderefencing system flexible enough to support any reference
type.

Philippe Canal, August 11th 2008 ROOT development 79

And Some More

• Improved Modularization (2007)
• libCore, libRIO, libTTree, libTTreePlayer

• Improved compression tunning (2004,2005,2007)
• Double32, Float16, saved in as few bits as requested.

• FastMerging (2005)
• Improve performance of concatenation jobs by skipping uncompressing (zip)

and unstreaming (object creation) steps [Pioneered by CDF]

• Extension of the output format (2004)
• XML
• Relational Database

• TFileStager / TTreeCache (2008)
• Improve performance over slow link or low latency links

• Autodetection of user types in TTree interface (2007/8)

• Unzipping of basket in background (2008)

Philippe Canal, August 11th 2008 ROOT development 80

Data Model Evolution

• Limitation of Automatic schema evolution
• Handle only removal, addition of members and change in simple type
• Does not support change in complex type, change in semantic (like units)

• Limitation of hand written schema evolution
• Since it requires a streamer function it can not be used in split mode

• Data Model Evolution solves this issues
(brought to your courtesy of BNL/STAR/ATLAS)

• Capabilities:
• Assign values to transient data members
• Rename classes
• Rename data members
• Change the shape of the data structures or convert one class structure to

another
• Change the meaning of data members
• Can access the TBuffer directly if needed
• Ensure that the objects in collections are handled in the same way as the ones

stored separately
• Make things operational also in bare ROOT mode
• Supported in object-wise, member-wise and split modes.

Philippe Canal, August 11th 2008 ROOT development 81

Data Model Evolution

• Setting a transient member

• Setting a new member from 2 removed members

• Renaming a class

#pragma read sourceClass="ACache" targetClass="ACache" \

source="int x; int y;" version="[8]" target="z" \

code="{ z = onfile.x*1000 + onfile.y*10; }"

#pragma read sourceClass="ACache" targetClass="ACache" \

source="" version="[1-]" target="zcalc" \

code="{ zcalc = false; }"

#pragma read sourceClass="ACache" targetClass="Axis" \

source="int x; int y;" version="[8]" target="z" \

code="{ z = onfile.x*1000 + onfile.y*10; }“

#pragma read sourceClass="ACache" version="[9]" targetClass="Axis";

